Group Formation, Relatedness, and the Evolution of Multicellularity
نویسندگان
چکیده
The evolution of multicellular organisms represents one of approximately eight major evolutionary transitions that have occurred on earth. The major challenge raised by this transition is to explain why single cells should join together and become mutually dependent, in a way that leads to a more complex multicellular life form that can only replicate as a whole. It has been argued that a high genetic relatedness (r) between cells played a pivotal role in the evolutionary transition from single-celled to multicellular organisms, because it leads to reduced conflict and an alignment of interests between cells. We tested this hypothesis with a comparative study, comparing the form of multicellularity in species where groups are clonal (r = 1) to species where groups are potentially nonclonal (r ≤ 1). We found that species with clonal group formation were more likely to have undergone the major evolutionary transition to obligate multicellularity and had more cell types, a higher likelihood of sterile cells, and a trend toward higher numbers of cells in a group. More generally, our results unify the role of group formation and genetic relatedness across multiple evolutionary transitions and provide an unmistakable footprint of how natural selection has shaped the evolution of life.
منابع مشابه
Cooperation, clumping and the evolution of multicellularity.
The evolution of multicellular organisms represents one of the major evolutionary transitions in the history of life. A potential advantage of forming multicellular clumps is that it provides an efficiency benefit to pre-existing cooperation, such as the production of extracellular 'public goods'. However, this is complicated by the fact that cooperation could jointly evolve with clumping, and ...
متن کاملConcurrent coevolution of intra-organismal cheaters and resisters.
The evolution of multicellularity is a major transition that is not yet fully understood. Specifically, we do not know whether there are any mechanisms by which multicellularity can be maintained without a single-cell bottleneck or other relatedness-enhancing mechanisms. Under low relatedness, cheaters can evolve that benefit from the altruistic behaviour of others without themselves sacrificin...
متن کاملThe Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity.
The transition to multicellularity has occurred numerous times in all domains of life, yet its initial steps are poorly understood. The volvocine green algae are a tractable system for understanding the genetic basis of multicellularity including the initial formation of cooperative cell groups. Here we report the genome sequence of the undifferentiated colonial alga, Gonium pectorale, where gr...
متن کاملSynergistic cooperation promotes multicellular performance and unicellular free-rider persistence
The evolution of multicellular life requires cooperation among cells, which can be undermined by intra-group selection for selfishness. Theory predicts that selection to avoid non-cooperators limits social interactions among non-relatives, yet previous evolution experiments suggest that intra-group conflict is an outcome, rather than a driver, of incipient multicellular life cycles. Here we rep...
متن کاملBangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/ Neoproterozoic radiation of eukaryotes
—Multicellular filaments from the ca. 1200-Ma Hunting Formation (Somerset Island, arctic Canada) are identified as bangiacean red algae on the basis of diagnostic cell-division patterns. As the oldest taxonomically resolved eukaryote on record Bangiomorpha pubescens n. gen. n. sp. provides a key datum point for constraining protistan phylogeny. Combined with an increasingly resolved record of o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2013